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Abstract The partitioning of the free energy into
additive contributions originating from different groups
of atoms or force field terms has the potential to provide
relationship between structure and biological activity of
molecules. In this article, the theoretical foundation for
the free energy decomposition in the free energy pertur-
bation (FEP) methodology is formulated using Thiele
cumulants, a powerful tool from the arsenal of probabil-
ity theory and mathematical statistics. We establish that
rigorous decomposition of the free energy into its com-
ponents is precluded by the presence of mixed potential
energy terms in Thiele cumulants of second and higher
orders. However, we also show that the resultant non-
additivity error can be reduced to an arbitrary value by
increasing the number of FEP steps. Consequently, the
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whole system can be in the limit of small perturbation
steps adequately represented by the sum of its constitu-
ent parts.

Keywords Free energy decomposition · Free energy
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1 Introduction

Gibbs free energy G represents the thermodynamic
potential of the �(N, P, T) ensemble. Therefore, it dic-
tates the direction of processes at typical laboratory con-
ditions of constant pressure P, constant temperature T,
and constant number of particles N. Since living cells
also operate at such conditions, G governs the direction
of biochemical processes as well [1].

The free energy perturbation (FEP) method repre-
sents a robust methodology for calculating the free energy
differences. It is based on a well known equation attrib-
uted to Zwanzig [2]:

�Gk→k+1 = −β−1 ln
〈
e−β�E

〉
k

(1)

where �Gk→k+1 denotes the free energy difference
between states k and k + 1 that may correspond to
different chemical entities. For example, DNA duplex
containing thymine (state k) could be destabilized
(�Gk→k+1) by substituting oxygen atoms of thymine by
fluorine atoms to obtain difluorotoluene (state k+1) [3].
�E = Ek+1 − Ek represents the corresponding poten-
tial energy difference. β−1 = kBT, where kB stands
for the Boltzmann constant, and T is the thermody-
namic temperature. Notation 〈· · · 〉k indicates averag-
ing over the ensemble of configurations generated by
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a molecular dynamics (MD) simulation on the poten-
tial energy surface of state k. Equation (1) rigorously
gives excess Helmholz free energy, but the difference
between Helmholz and Gibbs free energy is negligible
in condensed systems.

The partitioning of the free energy into additive con-
tributions originating from groups of atoms or force field
terms has been applied as a foundation for many estab-
lished methods of computer-aided drug design such as
scoring functions for molecular docking [4], linear inter-
action energy [5,6], or linear response [7,8] approxi-
mations. Using classical empirical force fields such an
additive decomposition is, while always valid for the
potential energy, not generally attainable for the free
energy [9]. The knowledge of the conditions required
for the additive dissecting of the free energy is, however,
indispensable for the understanding of the relationship
between structure and biological activity of molecules,
since all fragmental methods like structure-based de
novo ligand design [10], three-dimensional pharmaco-
phores [11], or coarse-grained models for polymer chains
[12] owe their success to its validity.

In order to obtain accurate free energy differences,
the states k and k+1 of (1) must overlap in phase space.
These consecutive states should resemble enough to
ensure adequate sampling of the phase space belonging
to k+1 when simulating k. Thus, the overall change from
the initial to the final state is usually attained in a series
of L small steps—FEP windows [13]. In this case, states k
and k + 1 may represent hybrid structures between two
different chemical entities. Such structures could, for
example, contain hybrid atoms with charges and van der
Waals parameters somewhere between oxygen atoms of
thymine and fluorine atoms of difluorotoluene [3]. Since
free energy is a state function, its difference depends
only on the choice of the initial and final states and not
on the selection of a path connecting them. Therefore,
the overall free energy difference can be expressed as a
sum of L partial free energy differences:

�G =
L∑

k=1

�Gk→k+1 (2)

By increasing the number of steps we not only
improve the overlap in the phase space of the consecu-
tive states, but also decrease |�E| of an individual step.
The main goal of this paper is to present the reflection of
this fact in the expression for the free energy difference
(1) and its effect on the additivity of the free energy.
We are going to address these questions with the help
of Thiele cumulants, a powerful tool from the arsenal
of probability theory and mathematical statistics. These
cumulants and related formulations have been success-

fully applied to investigate proton and electron transfers
[14], solvation free energies [15], and infrared spectra of
liquids [16,17], to determine temperature dependence of
thermodynamic functions [18], and to analyze the LRA
method [19]. The history and mathematical significance
of Thiele cumulants are briefly described in supplemen-
tary materials. Generalized Thiele cumulants with oper-
ators as arguments of the exponential function are called
Kubo cumulants and have been extensively applied to
quantum-statistical mechanics [20].

2 Thiele cumulants

Formal Thiele cumulants are the coefficients of a dou-
ble power series expansion [21]. In brief, we begin with
a function f that can be expanded in the power series

f (x) =
∞∑

n=0

µn

n! xn, with µ0 = 1. (3)

We recall that the logarithm power series

ln(1 + u)=u − 1
2

u2 + 1
3

u3 − · · ·+(−1)n+1 1
n

un + · · ·
(4)

converges for −1 < u ≤ 1. Therefore, if we rewrite (3)
in the form

f (x) = 1 +
∞∑

n=1

µn

n! xn (5)

and denote

u(x) ≡
∞∑

n=1

µn

n! xn (6)

we can, for −1 <
∑∞

n=1
µn
n! xn ≤ 1 evaluate the power

series of ln f

ln f (x) = u(x) − 1
2

u2(x) + 1
3

u3(x) − · · ·

+ (−1)n+1 1
n

un(x) + · · · (7)

that can be expanded in powers of x

ln f (x) =
∞∑

n=1

µn

n! xn − 1
2

( ∞∑
n=1

µn

n! xn

)2

+ 1
3

( ∞∑
n=1

µn

n! xn

)3

− 1
4

( ∞∑
n=1

µn

n! xn

)4

+ 1
5

( ∞∑
n=1

µn

n! xn

)5

− · · · (8)
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By reordering (8) in increasing powers of x we get the
power series of the form

ln f (x) =
∞∑

n=1

κn

n! xn (9)

with coefficients κn called the Thiele cumulants.
To calculate the Thiele cumulants we will need coeffi-

cients of the powers of power series. Let us consider the
power series S,

S = a x + b x2 + c x3 + d x4 + e x5 + · · · (10)

and calculate the powers of S

S2 = a2 x2 + 2ab x3 + (b2 + 2ac)x4

+2(ad + bc)x5 + · · · (11)

S3 = a3 x3 + 3a2b x4 + 3(ab2 + a2c)x5 + · · · (12)

S4 = a4 x4 + 4a3b x5 + · · · (13)

S5 = a5 x5 + · · · (14)

Applying (10) till (14) we expand (8) and get the first
five Thiele cumulants

κ1 = µ1 (15)

κ2 = µ2 − µ2
1 (16)

κ3 = µ3 − 3µ1µ2 + 2µ3
1 (17)

κ4 = µ4 − 4µ1µ3 − 3µ2
2 + 12µ2

1µ2 − 6µ4
1 (18)

κ5 = µ5 − 5µ1µ4 − 10µ2µ3 + 30µ1µ
2
2

+20µ2
1µ3 − 60µ3

1µ2 + 24µ5
1 (19)

Verifications for e−x (S1) and ex (S2) can be found in
supplementary materials.

A general form of Thiele cumulants can also be pro-
vided [21]. Generally, we can express any integer n, (n =
1, 2, 3 . . .) as a sum

n =
∑

i

i ni (20)

in several different ways. This is a well known problem
of expressing an integer n as a sum of integers i where
ni is their frequency in the sum. For example, we can
express integer 3 as a sum (20) in three different ways

3 = 1 · 3

3 = 1 · 1 + 2 · 1

3 = 1 · 0 + 2 · 0 + 3 · 1

and, therefore, in this particular case we get three
sequences of integers ni that satisfy (20) for n = 3

(3), (1, 1), (0, 0, 1) (21)

with sums
∑

i ni equal to

3, 1 + 1 = 2 and 0 + 0 + 1 = 1, (22)

respectively. Based on these expressions we calculate
the third Thiele cumulant

κ3 =3!
∑

ni

(−1)−1+∑
i ni

(
−1+

∑
i

ni

)
!
∏

i

[
(µi/i!)ni

ni!
]

(23)

where we summarize the products over all three
sequences (21). Indeed, with this expression we get

κ3 = 3!
(

(−1)2 2! (µ1/1!)3

3! + (−1)1 1! (µ1/1!)1

1!
(µ2/2!)1

1!

+(−1)0 0! (µ1/1!)0

0!
(µ2/2!)0

0!
(µ3/3!)1

1!

)
(24)

that we reduce to

κ3 = 3!
(

2!
3! µ3

1 − 1
2!µ1µ2 + 1

3! µ3

)
(25)

and obtain the Thiele cumulant κ3 equal to

κ3 = 2 µ3
1 − 3µ1µ2 + µ3 (26)

Note that this result is identical to expression (17) .
Now we will write a general form of Thiele cumulants

[21]

κn =n!
∑

ni

(−1)−1+∑
i ni

(
−1+

∑
i

ni

)
!
∏

i

[
(µi/i!)ni

ni!
]

(27)

where we summarize the products over all sequences of
integers that satisfy (20). Verifications for n = 2 (S3) and
n = 1 (S4) can be found in supplementary materials.

3 Free energy decomposition

If we expand the exponential function from the expres-
sion for the free energy difference (1) into a Taylor series
and apply the fact that the average of a sum equals the
sum of its averaged summands, we obtain

�Gk→k+1 = −β−1 ln

[
1 +

∞∑
n=1

(−β)n

n!
〈
(�E)n〉

k

]
(28)

If we compare the expression in the square brackets with
f (x) from (5) the following identities can be established:

x ≡ −β (29)

and

µn ≡ 〈
(�E)n〉

k (30)
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In analogy with (9) we can write

�Gk→k+1 = −β−1
∞∑

n=1

κn

n! (−β)n =
∞∑

n=1

κn

n! (−β)n−1 (31)

where κn is a Thiele cumulant defined in (27) with µn

given by (30).
The potential energy difference in effectively polar-

ized force fields always originates from various groups
of atoms or types of interactions:

�E =
m∑

i=1

�Ei (32)

However, in the case of polarizable force fields or quan-
tum-chemical calculations such potential energy decom-
position is not valid [22]. Corresponding free energy
components can be defined using (28) till (31) as

�Gi
k→k+1 = −β−1 ln

〈
e−β�Ei

〉
k

=
∞∑

n=1

κn,i

n! (−β)n−1 (33)

where κn,i is a Thiele cumulant determined via (27) with
µn,i given by

µn,i ≡ 〈
(�Ei)

n〉
k (34)

The nonadditivity error of such a free energy decom-
position can be determined as

�GNAD
k→k+1 = �Gk→k+1 −

m∑
i=1

�Gi
k→k+1

=
∞∑

n=1

κn − ∑m
i=1 κn,i

n! (−β)n−1 =
∞∑

n=1

�GNAD
k→k+1,n

(35)

There is no nonadditivity error of the first order since
using relations (15) , (30), (32), (34), and (35) we obtain

�GNAD
k→k+1,1 = µ1 −

m∑
i=1

µ1,i =
〈

m∑
i=1

�Ei

〉

k

−
m∑

i=1

〈�Ei〉k = 0 (36)

Expressions (16) , (30), (32), (34), and (35) are applied to
determine the nonadditivity error of the second order:

�GNAD
k→k+1,2

= −β

2

[
µ2 − µ2

1 −
m∑

i=1

(
µ2,i − µ2

1,i

)]

= −β

2

⎡
⎣

〈(
m∑

i=1

�Ei

)2〉

k

−
〈

m∑
i=1

�Ei

〉2

k

−
m∑

i=1

(〈
(�Ei)

2
〉
k

− 〈�Ei〉2
k

)]

= −β

2

⎡
⎣

m∑
i=1

〈
(�Ei)

2
〉
k

+ 2
m∑

i=1

∑
j>i

〈
�Ei�Ej

〉
k

−
m∑

i=1

〈�Ei〉2
k

−2
m∑

i=1

∑
j>i

〈�Ei〉k
〈
�Ej

〉
k −

m∑
i=1

〈
(�Ei)

2
〉
k

+
m∑

i=1

〈�Ei〉2
k

]

= β

m∑
i=1

∑
j>i

(〈�Ei〉k
〈
�Ej

〉
k − 〈

�Ei�Ej
〉
k

)
(37)

Note that the nonadditivity error of the second and
higher orders arises from the appearance of mixed
potential energy terms in the expression (28) for the
free energy difference. On the other hand, these mixed
terms can never be generated in a sum of all free energy
components given by (33).

Now, let us focus on nonmixed potential energy terms.
The general summand of the nth Thiele cumulant κn (27)
is of the form

Smdn ≡ A µ
p1
r1 µ

p2
r2 · · · µp�

r� (38)

where A is a numerical constant and

�∑
i=1

ripi = n (39)

If we revisit the fifth Thiele cumulant (19)

κ5 = µ5 − 5µ1µ4 − 10µ2µ3 + 30µ1µ
2
2 + 20µ2

1µ3

−60µ3
1µ2 + 24µ5

1

and take the fourth summand as an example, we indeed
see that

A = 30, r1 = 1, p1 = 1, r2 = 2, p2 = 2 and
2∑

i=1

ripi = 1 · 1 + 2 · 2 = 5

Inserting expressions (30) and (32) into the general sum-
mand (38), we obtain
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Smdn =

A

⎛
⎝

〈[
m∑

i=1

�Ei

]r1
〉

k

⎞
⎠

p1

·
⎛
⎝

〈[
m∑

i=1

�Ei

]r2
〉

k

⎞
⎠

p2

· · ·

×
⎛
⎝

〈[
m∑

i=1

�Ei

]r�〉

k

⎞
⎠

p�

= A

⎛
⎝
〈

m∑
i=1

[�Ei]r1 +· · ·
〉

k

⎞
⎠

p1

·
⎛
⎝
〈

m∑
i=1

[�Ei]r2 +· · ·
〉

k

⎞
⎠

p2

· · ·

×
⎛
⎝

〈
m∑

i=1

[�Ei]r� + · · ·
〉

k

⎞
⎠

p�

Since we are interested only in the nonmixed terms, all
the mixed summands are denoted by three dots. Once
again, because the average of a sum equals the sum of
its averaged summands, we continue:

= A

(
m∑

i=1

〈[�Ei]r1
〉
k+· · ·

)p1

·
(

m∑
i=1

〈[�Ei]r2
〉
k+· · ·

)p2

· · ·

×
(

m∑
i=1

〈[�Ei]r�
〉
k + · · ·

)p�

Considering only the nonmixed terms, we proceed:

= A

(
m∑

i=1

( 〈[�Ei]r1
〉
k

)p1 + · · ·
)

·
(

m∑
i=1

(
〈[�Ei]r2

〉
k)p2 + · · ·

)
· · ·

×
(

m∑
i=1

(
〈[�Ei]r�

〉
k)p� +· · ·

)

After multiplication, we get

= A
m∑

i=1

(〈
[�Ei]

r1
〉
k

)p1 · (〈
[�Ei]

r2
〉
k

)p2 · · · (〈[�Ei]
r�

〉
k

)p�

+ mixed terms (40)

The general summand of the nth Thiele cumulant for
the ith free energy component κn,i (33) is of the form

Smdn,i ≡ A µ
p1
r1,i µ

p2
r2,i · · ·µp�

r�,i (41)

Inserting expression (34) into the general summand (41),
we obtain

Smdn,i = A
(〈

[�Ei]
r1

〉
k

)p1 · (〈
[�Ei]

r2
〉
k

)p2

× · · · (〈[�Ei]
r�

〉
k

)p� (42)

Comparing results (40) and (42), we gain

Smdn =
m∑

i=1

Smdn,i + mixed terms

The same nonmixed potential energy terms are, there-
fore, present in the expression for the free energy differ-
ence and in the sum of its free energy components.

The perturbation from the initial state I to the final
state F can be performed either

• directly in a single perturbation step with the total
potential energy difference �E consisting of com-
ponents �E1, �E2, . . . , �Em and the nonadditivity
error of the second order given by (37)

�GNAD,1
I→F,2 = β

m∑
i=1

∑
j>i

(〈�Ei〉k
〈
�Ej

〉
k − 〈

�Ei�Ej
〉
k

)

• or step-wise in a series of L equal perturbation steps.
An average step has the potential energy differ-
ence of �E/L constructed from the components
�E1/L, �E2/L, . . . , �Em/L and the nonadditivity
error of the second order defined by (37)

�GNAD
k→k+1,2 = β

m∑
i=1

∑
j>i

(〈
�Ei

L

〉

k

〈
�Ej

L

〉

k

−
〈
�Ei

L

�Ej

L

〉

k

)

= β

L2

m∑
i=1

∑
j>i

(〈�Ei〉k
〈
�Ej

〉
k−〈

�Ei�Ej
〉
k

)

= �GNAD,1
I→F,2

L2 (43)

The overall nonadditivity error of the second order
obtained on a step-wise perturbation path �GNAD,L

I→F,2 is,
consequently, L-times the nonadditivity error of the sec-
ond order for an average perturbation step:

�GNAD,L
I→F,2 = L × �GNAD

k→k+1,2 = �GNAD,1
I→F,2

L
(44)

Therefore, �GNAD,L
I→F,2 is L-times smaller than the non-

additivity error of the second order attained on a direct
perturbation path �GNAD,1

I→F,2 . Analogously, since the non-
additivity error of the nth order is given by a sum of
products of n mixed �Ei-s, we can decrease this error
by a factor of Ln−1, simply, by performing the perturba-
tion I → F in a series of L equal steps rather than in a
single one:

�GNAD,L
I→F,n = L × �GNAD

k→k+1,n = L × �GNAD,1
I→F,n

Ln

= �GNAD,1
I→F,n

Ln−1
(45)
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4 Conclusions

The partitioning of the free energy into additive con-
tributions originating from different groups of atoms or
force field terms has the potential to provide relation-
ship between structure and biological activity of mole-
cules. Therefore, free energy decomposition is used as a
foundation for many established methods of computer-
aided drug design such as scoring functions for molecu-
lar docking, linear interaction energy, or linear response
approximations. All fragment-based approaches owe
their success to its validity as well. Whether such a free
energy partitioning is justified has been, however, vigor-
ously debated [23–26], with thermodynamic integration
[27] serving as a key theoretical tool for this discus-
sion.

In this paper, we set up the theoretical basis for the
free energy decomposition in the free energy perturba-
tion (FEP) formalism by using the Thiele cumulants, a
powerful tool from the arsenal of probability theory and
mathematical statistics. The authors find it fascinating,
how two different phenomena so distant as rolling a pair
of dice in a casino and the partitioning of the free energy
can be described by the same mathematical laws—the
Thiele cumulants. Applying the Zwanzig’s perturbation
formula we established that every dissection of the free
energy into its components possesses an inherent error
(called the ‘nonadditivity error’) arising solely from the
appearance of mixed potential energy terms in Thiele
cumulants of second and higher orders. Fortunately, it
is possible to decrease this error to an arbitrary value
just by increasing the number of perturbation steps. For
example, by using a total of 51 FEP steps nonadditiv-
ity of less than 0.02 kcal/mol for solvation free energies
of deoxyribonucleoside triphosphates was achieved [9].
Thus, the whole molecule can be adequately represented
by the sum of its constituent parts in the limit of a small
perturbation step. However, it should be noted that this
conclusion cannot be generalized to polarizable force
fields or quantum-chemical calculations, since they do
not yield additive potential energy components.

Furthermore, one has to be aware that the free energy
components are not state functions as only their sum is a
state function. Consequently, they should be calculated
on the most natural perturbation path possible. The free
energy decomposition scheme presented in this article
can be combined with the recent suggestion of such a
perturbation path [28] to form a powerful theoretical
tool for rational drug design and protein engineering
[29].

Acknowledgments The authors would like to thank Dušanka
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